DEVELOPMENTS OF 700-MHZ 5-CELL SUPERCONDUCTING CAVITIES FOR APT*

Abstract
We have manufactured a total of six $\beta=0.64$, 700-MHz 5-cell cavities. The APT (Accelerator Production of Tritium) specification requires $Q_0 > 5 \times 10^9$ at an accelerating field of 5 MV/m. So far, the results of vertical tests have shown maximum accelerating fields of 12 MV/m (peak surface field of 41 MV/m) and maximum low-field Q_0 of 3.6×10^{10} at 2 K. The present limitations are available input power, field emission and quench. This type of cavities will also be used for an ADTF (Accelerator-Driven Test Facility) for AAA (Advanced Accelerator Applications) project.

1 INTRODUCTION
The APT accelerator, if it is built, is a 100-mA, 1.7-GeV CW proton linac [1]. A number of papers have been published on the development of APT superconducting cavities, power couplers and cryostats in the past [2-23]. Since APT was named as a backup option to the commercial light-water reactor program in December 1998 [24], the ED&D activities shrank significantly. Tests, however, of all the six 700-MHz 5-cell cavities manufactured as part of prototyping efforts have been performed in vertical cryostats at LANL and TJNAF (Thomas Jefferson National Accelerator Facility). This paper presents the results of these tests as well as brief future plans.

2 CAVITIES
Table 1 shows the names, niobium suppliers, manufacturer and the initial thickness of the niobium of all the cavities. The LANL cavity was made in house at LANL. AES stands for Advanced Energy Systems, an American company. The last four cavities were manufactured by CERCA, a French company, and the cavities were named after popular female names of the countries where niobium suppliers are located.

Table 2 shows the parameters of the cavity. CERCA cavities were manufactured after LANL and AES cavities and their parameters are slightly different due to the increase in radius of the end beam pipe from 6.5 cm to 8 cm. This modification was made to obtain sufficient coupling between power coupler and beam [26].

Cavities are made of RRR=250 niobium and their inner surfaces were chemically etched 150 μm at the manufacturers. Figure 1 shows a cavity installed in the cryostat insert.

* Work supported by the US Department of Energy
† email: tajima@lanl.gov
3 SURFACE TREATMENT AND PREPARATION AT LANL

After delivery to LANL, the cavities were chemically etched again with a standard BCP (Buffered Chemical Polishing) solution of 1:1:2 [3]. Then, they were rinsed with high-pressure deionized water at ~950 psi in a class-100 clean room and assembled with couplers, flanges and vacuum valve. Once sealed in the clean room, the cavity was moved to a measurement room, set on the cryostat insert, and pumped down and leak checked. Before cooled down, the cavities were baked at 150 °C for 48 hours. It should be noted that no cavities were baked at temperatures higher than this before testing.

4 TEST RESULTS

Figure 2 shows the Q-E curves of all the cavities. The tests conducted at TJNAF are marked as JLAB with the legend. The data for Eleanore cavity between 4 MV/m and 11.5 MV/m are missing since we could not take the final data due to damage to the driving coupler cable. As for the LANL cavity, there were difficulties in performing the final equator weld in the middle cell and we found the \(Q_0 \) drop shown in Fig. 2 was caused by some defect at this equator from heating detected by a temperature sensor. Before the LANL cavity was tested, low-field \(Q_0 \) obtained at LANL were lower than that recorded by TJNAF. We have been investigating the cause of these differences. Rinsing process right after BCP might have contributed to the better \(Q_0 \) since the LANL cavity was filled with DI water and kept overnight before HPR (High Pressure Rinse).

4.1 Limitations

At LANL, the available RF power was limited to ~ 250 W. Degradation of \(Q_0 \) due to field emission limited performance, although it appeared that most of the cavities would have quenched at fields slightly higher than their maximum fields due to heating at defects or heating by electron bombardment on the surface. At TJNAF, however, they stopped measurement of the AES cavity so as not to damage the driving coupler cable. Germaine and Sylvia cavities were limited by quench.

5 DISCUSSION

The results shown in Fig. 2 are the best results for each cavity. Some cavities needed extra chemical etching (100-200 \(\mu \)m), RF processing and/or helium processing, although processing did not take more than a few hours. The problem we have to solve to get higher gradients for the next project such as AAA, that would want to operate at \(E_{\text{acc}} \) as high as 10 MV/m is, field emission. Unfortunately, we have not had good diagnostic tools, such as temperature and X-ray mapping of the cavity, to determine the loss distribution inside the cavity and identify the cause of \(Q_0 \) drops.

6 FUTURE PLANS

We are planning to identify the causes of field emissions that appear in most of the cavities using a temperature and X-ray mapping system being developed.
at LANL [25]. Moreover, a new 600 W power amplifier will be received soon and we will be able to do CW/pulse processing at higher power. In addition, if funded, we would like to perform a “guided repair” on the LANL cavity that indicated some defect on the equator region of the middle cell.

7 SUMMARY

The performance of all the six prototype APT 700-MHz 5-cell cavities is presented. All the cavities surpassed the APT goals with ample margin. The achievement of these results with relatively large 5-cell cavities (surface area = 0.858 m2) and without high-temperature heat treatment (> 150 °C) is remarkable.

For the ADTF, however, the goals will be $E_{cc} = 10$ MV/m at $Q_0 = 5 \times 10^9$. To achieve this goal with enough margins for reliable operation, we will have to solve the field emission problem and reach a maximum field of 13-15 MV/m.

8 REFERENCES